Adaptive Depth Control for Autonomous Underwater Vehicles Based on Feedforward Neural Networks

نویسندگان

  • Yang Shi
  • Weiqi Qian
  • Weisheng Yan
  • Jun Li
چکیده

This paper studies the design and application of the neural network based adaptive control scheme for autonomous underwater vehicle's (AUV's) depth control system that is an uncertain nonlinear dynamical one with unknown nonlinearities. The unknown nonlinearity is approximated by a feedforward neural network whose parameters are adaptively adjusted on-line according to a set of parameter estimation laws for the purpose of driving the AUV to cruise at the preset depth. The Lyapunov synthesis approach is used to develop the adaptive control scheme. The control law consists two parts: One is the certainty equivalent control and the other serves to compensate the neural network approximation error. The overall control system can guarantee that the tracking error converges in the small neighborhood of zero and all adjustable parameters involved are uniformly bounded. Simulation examples are given to illustrate the design procedure and the applicability of the proposed method. The results indicate that the proposed method is suitable for practical applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Robust Control for Trajectory Tracking of Autonomous underwater Vehicles on Horizontal Plane

This manuscript addresses trajectory tracking problem of autonomous underwater vehicles (AUVs) on the horizontal plane. Adaptive sliding mode control is employed in order to achieve a robust behavior against some uncertainty and ocean current disturbances, assuming that disturbance and its derivative are bounded by unknown boundary levels. The proposed approach is based on a dual layer adaptive...

متن کامل

A topology control algorithm for autonomous underwater robots in three-dimensional space using PSO

Recently, data collection from seabed by means of underwater wireless sensor networks (UWSN) has attracted considerable attention. Autonomous underwater vehicles (AUVs) are increasingly used as UWSNs in underwater missions. Events and environmental parameters in underwater regions have a stochastic nature. The target area must be covered by sensors to observe and report events. A ‘topology cont...

متن کامل

Adaptive Neural Network Control of Autonomous Underwater Vehicles

An adaptive neural network controller for autonomous underwater vehicles (AUVs) is presented in this paper. The AUV model is highly nonlinear because of many factors, such as hydrodynamic drag, damping, and lift forces, Coriolis and centripetal forces, gravity and buoyancy forces, as well as forces from thruster. In this regards, a nonlinear neural network is used to approximate the nonlinear u...

متن کامل

OPTIMIZED FUZZY CONTROL DESIGN OF AN AUTONOMOUS UNDERWATER VEHICLE

In this study, the roll, yaw and depth fuzzy control of an Au- tonomous Underwater Vehicle (AUV) are addressed. Yaw and roll angles are regulated only using their errors and rates, but due to the complexity of depth dynamic channel, additional pitch rate quantity is used to improve the depth loop performance. The discussed AUV has four aps at the rear of the vehicle as actuators. Two rule bases...

متن کامل

A Neural Network Adaptive Controller for Autonomous Diving Control of an Autonomous Underwater Vehicle

This paper presents a neural network adaptive controller for autonomous diving control of an autonomous underwater vehicle (AUV) using adaptive backstepping method. In general, the dynamics of underwater robotics vehicles (URVs) are highly nonlinear and the hydrodynamic coefficients of vehicles are difficult to be accurately determined a priori because of variations of these coefficients with d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJCSA

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2007